
Fall 2009 Math 245 Exam 2 Solutions

Exam scores: One quarter of the exam scores were below 70, one quarter
between 70 and 75.5 (the median), one quarter between 75.5 and 80, and
one quarter of the scores were above 80.

1. Carefully define the following terms:
This problem tests the students’ attention to detail and commitment
to accurate definitions, which are very important in mathematics. A
constructive proof of the existence of some object does so by explicitly
finding the desired object. A cardinal number represents the size or
cardinality of some set. The symmetric difference A∆B for sets A,B
is (A−B)∪ (B−A) or (A∪B)− (A∩B). The power set of a set S is
the set consisting of all the subsets of S (including the empty subset).
The union A ∪B for sets A,B is the set {x : x ∈ A or x ∈ B}.

2. Let U = {a, b, c, d}, A = {a, a, b, c}, B = {a, c}, C = {a, c, d}. Find
((A−B)∆C) ∩ (C ∩B)c.
This problem tests set operations. A − B = {b}, ((A − B)∆C) =
U,C ∩B = {a, c}, (C ∩B)c = {b, d}, ((A−B)∆C)∩ (C ∩B)c = {b, d}.

3. Prove that if n is an even integer then bn
2 c = n

2 .
This problem tests proofs with even numbers and floors. Because n is
even, there is an integer k with n = 2k. Substituting, bn

2 c = b2k
2 c =

bkc = k = n
2 .

4. Let A,B be two sets. Prove that if A ⊆ B then Bc ⊆ Ac.
This problem tests proofs with subsets.

SOLUTION 1: Direct proof. The hypothesis is that A ⊆ B. By
definition of subset, this means that for all x, if x ∈ A then x ∈ B.
This is logically equivalent to its contrapositive, which is: for all x, if
x /∈ B, then x /∈ A. But (x /∈ B) ≡ (x ∈ Bc), and (x /∈ A) ≡ (x ∈ Ac),
so this implies: for all x, if x ∈ Bc, then x ∈ Ac. But this is the
definition of Bc ⊆ Ac.

SOLUTION 2: Proof by contradiction. Let x ∈ Bc, and suppose that
x /∈ Ac. Then x ∈ A, hence by hypothesis x ∈ B. But this contradicts
x ∈ Bc, so our hypothesis (that x /∈ Ac) was false, and x ∈ Ac. Hence
we have proved that for all x ∈ Bc, x ∈ Ac; hence Bc ⊆ Ac.

5. Prove that, for all n ∈ N, ( 1 1
0 1 )n = ( 1 n

0 1 ).
This problem tests matrix multiplication and proof by induction. Call
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the predicate S(n). The base case is S(1), i.e. n = 1, which is that
( 1 1

0 1 )1 = ( 1 1
0 1 ), true. We now suppose S(n) is true and try to prove

S(n + 1). ( 1 1
0 1 )n+1 = ( 1 1

0 1 )n ( 1 1
0 1 ) = ( 1 n

0 1 ) ( 1 1
0 1 ) =

(
1 n+1
0 1

)
, where

we used the definition of exponentiation, our inductive hypothesis,
and matrix multiplication respectively. Comparing the first and last
expressions proves S(n + 1), as desired.

6. Use the Euclidean algorithm to calculate gcd(605, 847).
This problem tests the Euclidean algorithm. 847 = 1 · 605 + 242.
605 = 2 · 242 + 121. 242 = 2 · 121 + 0. Hence gcd(605, 847) = 121.

7. For all odd integers n, prove that n3 is odd.
This problem tests the definition of odd. Our hypothesis is that n is
odd; by definition of odd there is some integer k with n = 2k + 1.
n3 = (2k + 1)3 = (2k)3 + 3(2k)2 + 3(2k) + 1 = 8k3 + 12k2 + 6k + 1 =
2(4k3 + 6k2 + 3k) + 1 = 2s + 1, for integer s = 4k3 + 8k2 + 4k. Hence
by definition of odd, n3 is odd.

8. Prove that
√

3 is irrational.
This problem tests proofs by contradiction. Suppose that

√
3 = m

n ,
where m,n have no common factors. Squaring, we get 3 = m2

n2 , hence
m2 = 3n2. So 3|m · m; but 3 is prime, so 3|m. Write m = 3k, and
substitute into m2 = 3n2 to get 9k2 = 3n2 or 3k2 = n2. So 3|n · n;
but 3 is prime, so 3|n. So 3 is a common factor of both m, n, which
contradicts our hypothesis that m,n have no common factors.

9. Prove that x2 + 2x < 8 if and only if |x + 1| < 3.
This problem tests proofs of biconditional theorems. It is important
to prove both directions; this can be done by proving each direction
separately, or by being very careful. x2 + 2x < 8, iff x2 + 2x− 8 < 0,
iff (x + 4)(x − 2) < 0, iff exactly one of (x + 4), (x − 2) is negative,
iff x + 4 > 0 and x − 2 < 0, iff −4 < x < 2, iff −3 < x + 1 < 3, iff
|x + 1| < 3.

10. Consider the two-element Boolean algebra {0, 1}. Prove the absorp-
tion theorem: ∀a∀b, a⊕ (a� b) ≡ a.
This problem tests understanding of Boolean algebra arithmetic. For-
tunately this Boolean algebra is small, so there are only four cases to
test.
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a b a� b a⊕ (a� b)
0 0 0 0
0 1 0 0
1 0 0 1
1 1 1 1

Comparing the first and last column proves the theorem.
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