Fall 2009 Math 245 Exam 2 Solutions

Exam scores: One quarter of the exam scores were below 70, one quarter between 70 and 75.5 (the median), one quarter between 75.5 and 80 , and one quarter of the scores were above 80 .

1. Carefully define the following terms:

This problem tests the students' attention to detail and commitment to accurate definitions, which are very important in mathematics. A constructive proof of the existence of some object does so by explicitly finding the desired object. A cardinal number represents the size or cardinality of some set. The symmetric difference $A \Delta B$ for sets A, B is $(A-B) \cup(B-A)$ or $(A \cup B)-(A \cap B)$. The power set of a set S is the set consisting of all the subsets of S (including the empty subset). The union $A \cup B$ for sets A, B is the set $\{x: x \in A$ or $x \in B\}$.
2. Let $U=\{a, b, c, d\}, A=\{a, a, b, c\}, B=\{a, c\}, C=\{a, c, d\}$. Find $((A-B) \Delta C) \cap(C \cap B)^{c}$.
This problem tests set operations. $A-B=\{b\},((A-B) \Delta C)=$ $U, C \cap B=\{a, c\},(C \cap B)^{c}=\{b, d\},((A-B) \Delta C) \cap(C \cap B)^{c}=\{b, d\}$.
3. Prove that if n is an even integer then $\left\lfloor\frac{n}{2}\right\rfloor=\frac{n}{2}$.

This problem tests proofs with even numbers and floors. Because n is even, there is an integer k with $n=2 k$. Substituting, $\left\lfloor\frac{n}{2}\right\rfloor=\left\lfloor\frac{2 k}{2}\right\rfloor=$ $\lfloor k\rfloor=k=\frac{n}{2}$.
4. Let A, B be two sets. Prove that if $A \subseteq B$ then $B^{c} \subseteq A^{c}$. This problem tests proofs with subsets.

SOLUTION 1: Direct proof. The hypothesis is that $A \subseteq B$. By definition of subset, this means that for all x, if $x \in A$ then $x \in B$. This is logically equivalent to its contrapositive, which is: for all x, if $x \notin B$, then $x \notin A$. But $(x \notin B) \equiv\left(x \in B^{c}\right)$, and $(x \notin A) \equiv\left(x \in A^{c}\right)$, so this implies: for all x, if $x \in B^{c}$, then $x \in A^{c}$. But this is the definition of $B^{c} \subseteq A^{c}$.
SOLUTION 2: Proof by contradiction. Let $x \in B^{c}$, and suppose that $x \notin A^{c}$. Then $x \in A$, hence by hypothesis $x \in B$. But this contradicts $x \in B^{c}$, so our hypothesis (that $x \notin A^{c}$) was false, and $x \in A^{c}$. Hence we have proved that for all $x \in B^{c}, x \in A^{c}$; hence $B^{c} \subseteq A^{c}$.
5. Prove that, for all $n \in \mathbb{N},\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)^{n}=\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right)$.

This problem tests matrix multiplication and proof by induction. Call
the predicate $S(n)$. The base case is $S(1)$, i.e. $n=1$, which is that $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)^{1}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, true. We now suppose $S(n)$ is true and try to prove $S(n+1) .\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)^{n+1}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)^{n}\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1 & n+1 \\ 0 & 1\end{array}\right)$, where we used the definition of exponentiation, our inductive hypothesis, and matrix multiplication respectively. Comparing the first and last expressions proves $S(n+1)$, as desired.
6. Use the Euclidean algorithm to calculate $\operatorname{gcd}(605,847)$.

This problem tests the Euclidean algorithm. $847=1 \cdot 605+242$. $605=2 \cdot 242+121.242=2 \cdot 121+0$. Hence $\operatorname{gcd}(605,847)=121$.
7. For all odd integers n, prove that n^{3} is odd.

This problem tests the definition of odd. Our hypothesis is that n is odd; by definition of odd there is some integer k with $n=2 k+1$. $n^{3}=(2 k+1)^{3}=(2 k)^{3}+3(2 k)^{2}+3(2 k)+1=8 k^{3}+12 k^{2}+6 k+1=$ $2\left(4 k^{3}+6 k^{2}+3 k\right)+1=2 s+1$, for integer $s=4 k^{3}+8 k^{2}+4 k$. Hence by definition of odd, n^{3} is odd.
8. Prove that $\sqrt{3}$ is irrational.

This problem tests proofs by contradiction. Suppose that $\sqrt{3}=\frac{m}{n}$, where m, n have no common factors. Squaring, we get $3=\frac{m^{2}}{n^{2}}$, hence $m^{2}=3 n^{2}$. So $3 \mid m \cdot m$; but 3 is prime, so $3 \mid m$. Write $m=3 k$, and substitute into $m^{2}=3 n^{2}$ to get $9 k^{2}=3 n^{2}$ or $3 k^{2}=n^{2}$. So $3 \mid n \cdot n$; but 3 is prime, so $3 \mid n$. So 3 is a common factor of both m, n, which contradicts our hypothesis that m, n have no common factors.
9. Prove that $x^{2}+2 x<8$ if and only if $|x+1|<3$.

This problem tests proofs of biconditional theorems. It is important to prove both directions; this can be done by proving each direction separately, or by being very careful. $x^{2}+2 x<8$, iff $x^{2}+2 x-8<0$, iff $(x+4)(x-2)<0$, iff exactly one of $(x+4),(x-2)$ is negative, iff $x+4>0$ and $x-2<0$, iff $-4<x<2$, iff $-3<x+1<3$, iff $|x+1|<3$.
10. Consider the two-element Boolean algebra $\{0,1\}$. Prove the absorption theorem: $\forall a \forall b, a \oplus(a \odot b) \equiv a$.
This problem tests understanding of Boolean algebra arithmetic. Fortunately this Boolean algebra is small, so there are only four cases to test.

a	b	$a \odot b$	$a \oplus(a \odot b)$
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

Comparing the first and last column proves the theorem.

